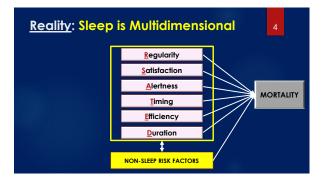
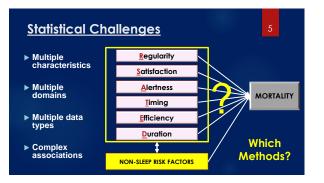
Multidimensional Sleep Health and Mortality in Older Adults

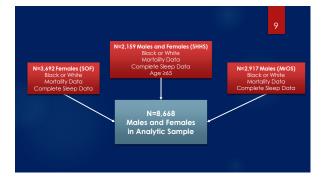
MEREDITH WALLACE, PHD DEPARTMENT OF PSYCHIATRY UNIVERSITY OF PITTSBURGH PITTSBURGH, PA

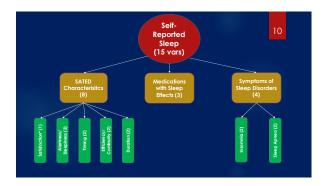


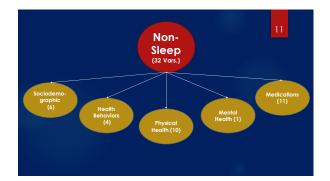


Overarching Goal	What is the question?	6 Methods I am Using
	What is the importance of MDSH for mortality relative to other established risk factors?	 Tree models Random forest
Explaining Associations	Which sleep characteristics predict mortality?	techniques
	Do MDSH phenotypes exist?	Clustering followed
	Do MDSH phenotypes predict mortality?	by regression (or other model)
Individual Predictions	Which individuals are at risk for mortality based on their MDH?	 Random Forest Other Machine Learning

		7	
Overarching Goal	What is the question?	Methods I am Using	
	What is the importance of MDSH for mortality relative to other established risk factors?	 Tree models Random forest 	
Explaining Associations	Which sleep characteristics predict mortality?	techniques	
	Do MDSH phenotypes exist?	Clustering followed	
	Do MDSH phenotypes predict mortality?	by regression (or other model)	
Individual Predictions	Which individuals are at risk for mortality based on their MDH?	 Random Forest Other Machine Learning 	







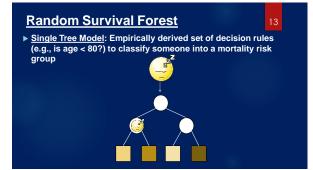
Random Survival Forest

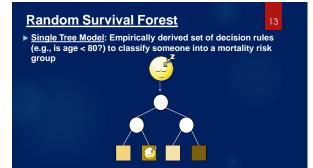
- Machine learning approach
- Models complex, non-linear associations

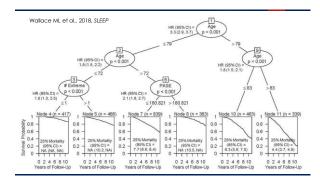
shrawan, et al. 2008, Ann Appl Sta

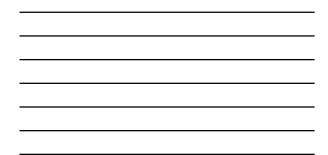
Random Survival Forest

Single Tree Model: Empirically derived set of decision rules (e.g., is age < 80?) to classify someone into a mortality risk group



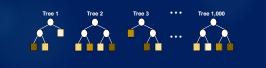






Random Survival Forest

- ► Create hundreds of bootstrap samples
- ▶ Divide each sample into "in-bag" / "out of bag" (OOB) sets
- ▶ Fit tree model to each "in-bag" sample to create forest



Prediction Error of Model

Can the model discriminate which of two randomly selected individuals will have a worse survival outcome? (1 - Harrell's C)

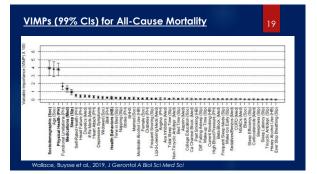
- ► In-bag prediction error (cases used to grow trees)
- OOB prediction error (cases used to grow other trees)
- Cross-Validation or External Validation (not used to grow any trees)

Variable Importance (VIMP)

- 1. Grow random forest (uses in-bag data)
- 2. Estimate OOB Error of Model with Real "X":
- 3. Estimate OOB Error of Model with Permuted "X" $% \mathcal{X}^{*}$
- Compare (larger → "X" more predictive)
- ► Can compute VIMPs for groups of variables (e.g., MDSH)
- Confidence intervals: stratified subsampling with jackknife estimates of standard errors (Ishrawan & Lu, Stat Med, in press)

<u> Variable Importance (VIMP)</u>

- ► Use OOB data to enhance computational efficiency
- ▶ VIMPs of correlated measures artificially inflated
- Assess relative predictive accuracy by refitting random forest with vs without predictor(s)
 Computationally burdensome!!



VIMPs (99% CIs) for All-Cause Mortality

Top-Tier Predictors: 1. Socio-demographic Domain 2. Age 3. Physical Health Domain

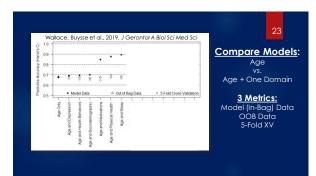
Second-Tier Predictors: 3. Functional Limitations

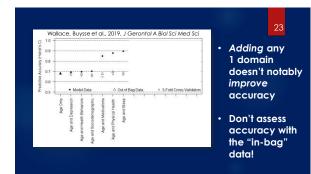
- 4. Medication Domain
- Sleep Domain
 Self-Rated Health Status
 Heart Failure
- 8. Diuretics
 9. # Rx Medications
- 10. Heart Attack
- 11. Depressive Symptoms

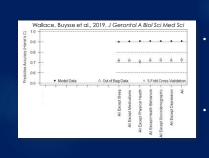
VIMPs (99% CIs) for All-Cause Mortality

Second-Tier Predictors (continued): 12. Widowed 13.BMI 14. Health Behaviors Domain 15. Time in Bed 16. Napping 17.Stroke

... 27. Total Sleep Time 28. Antidepressants





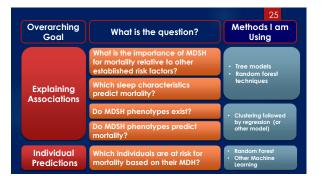


23

- Removing any 1 domain doesn't notably decrease accuracy
- Don't assess accuracy with the "in-bag" data!

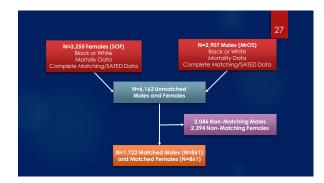
Why do we care?

- Need to start asking older adults about their sleep
- Not only sleep duration!
- Screening tools incorporating MDSH should be developed
- Other ages?
- MDSH Modifiability + Predictive Ability = Novel Target for Improving Health

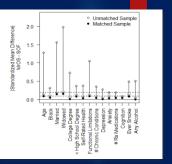


Why do we care about phenotypes? 26

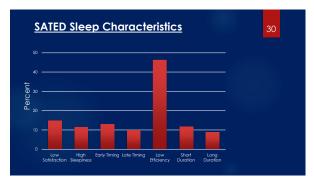
- Clarify understanding of sleep challenges
- Motivate the development of novel treatments
- Phenotypes stronger and more meaningful predictors?
- Suggest hypotheses for underlying disease mechanisms



Matched Males Older More likely to be black Less education Less likely to be married Less Smoking/Drinking Worse physical health Worse mental health



omain	Sleep Characteristic
atisfaction	Poor Quality (Poor/ Very Poor on PSQI item)*
<u>A</u> lertness/ Sleepiness	High Sleepiness (Epworth > 10)*
<u>I</u> iming	Sleep Midpoint Early (<02:00)* Middle (02:00 -04:00) Late (>04:00)*
Efficiency	Low Sleep Efficiency (<85%)*
<u>D</u> uration	Total Sleep Time Short (<6 hours)* Medium (6-8 hours) Long (>8 hours)*



Common SATED Combinations?

By hand

- ▶ 2³ x 3² = 72 pos
- ► Tabulate all .nen.

Use LCA to identify most common patterns

- Model-based
- Maximize likelihood to estimate unknown parameters (e.g., class probabilities)

Latent Class Analysis

How many classes?

3-Class Solution

Average Sleep (AS)

HSF AS

Jaccard Coefficient 0 = least stable 1 = most stable

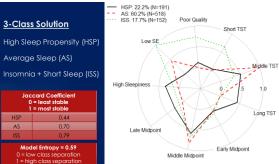
Model Entropy = 0.59

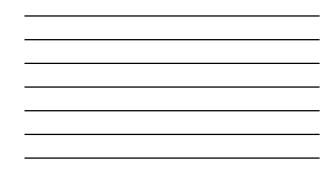
0.44

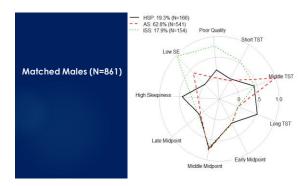
- ▶ Fit models with 1-6 classes
- Examine relative goodness of fit with AIC and BIC
- Bootstrap Likelihood Ratio (McLachlan 1987, Applied Stat)

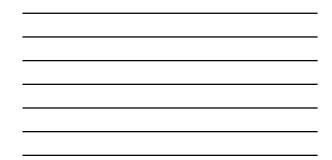
Evaluate Stability and Class Separation of Final Model

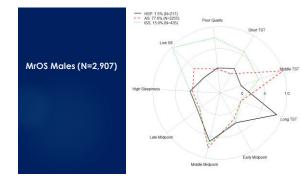
- ► Jaccard Coefficient for stability of each class (Hennig 2007, Comp Stat Data Anal)
- Model Entropy (Ramaswamy et al., 1993, Marketing Science)

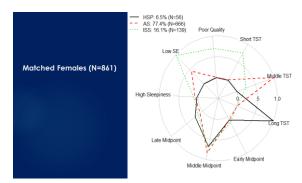


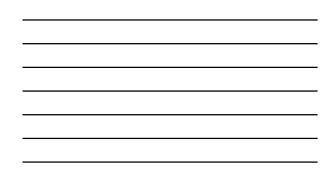


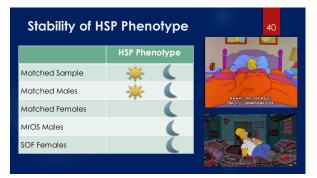




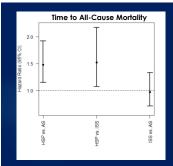








Characterization of Phenotypes 40		
	d/h > .20	
Anxiety (GADS)	ISS > (HSP, AS)	
Depression (GDS-15)	ISS > (HSP, AS)	
Cognition (26-item mMMSE)		
Self-Rated Health (1 = Excellent; 5=Very Poor)	ISS > AS	
Number of Functional Limitations	(ISS, HSP) > AS	
Number of Chronic Conditions	ISS > (HSP, AS)	
Number of Prescription Medications	ISS > AS	



41 • Associations stronger among

- women

 Findings generalize to other samples (smaller effects in MrOS/SOF)
- Other sleep health approaches (SATED scale, multivariable regression) not

predictive

Moving Forward

- ► Objective data types (Actigraphy, PSG)
- ► Does MDSH also predict other health outcomes?
- ► Mechanisms linking HSP or MDSH to mortality
- Create a MDSH measures that is good enough for multiple outcomes or populations

Thank you!

lotzmj@upmc.edu

<u>University of Pittsburgh</u> Dan Buysse, MD Martica Hall, PhD

California Pacific Medical Center Katie Stone, PhD Terri Blackwell, MA

Brigham and Women's Hospital Susan Redline, MD, MPH Mike Rueschman, MPH

Data from the Osteoporotic Fractures in Men (MrOS) Study is publicly available on the MrOS Online website.

For more information or to download data, please visit:

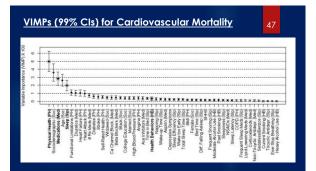
Grants

- Wallace: NiA grant R01 AG056331
 The Osteoporate Fractures in Men (MrO3) Study is supported by National Institutes of Health funding. The following institutes provide support: the National Institute on Aging (NA), the National Institute of Artimits and Musculoskelal and Skin Disease (NAMS), the National Center for Advancing Instrahotanal Sciences (NASA), and NH Rodombo for Medical Research under the Instrument of Control (National National National Institute) (National Institute) (National Institute) (National Participant), UN Accession (National National National National National National National National Institute) (National National The National Heart, Lung, and Blood Institute (NHLB) provides funding for the MrOS Sleep ancillary Study 1946, National Nati
- The study of Outseparotics Fracture BCP is supported by Notional Institutes of tearth framemer. Residual Study and Study Stud
- SHHS: U01HL53916, U01HL53931, U01HL53934, U01HL53937, U01HL53938, U01HL53940, U01HL53941, U01HL64360)
- National Sleep Research Resource (NSRR): NHLBI grant HL114473
 SIR study: AG047139

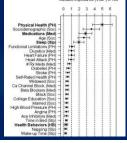
Sample Characteristics

Sample Characteristics

- ▶ Mean (SD) age = 78.7 (6.7)
- ▶ 8% Black (N=718)
- ▶ 54% Female (N=4,682)
- ▶ 41% All-cause mortality (N=3,552)
- ▶ 13% Cardiovascular mortality (N=1,079)



VIMPs (99% CIs) for Cardiovascular Mortality



Top-Tier Predictors: 1. Physical Health Domain

48

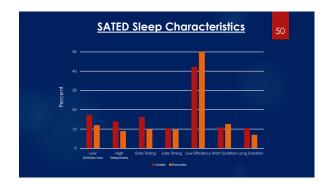
Second-Tier Predictors: 3. Medications Domain 4. Age

- 4. Age 5. Sleep Domain
- 6. Functional Limitations7. Diuretics
- Diuretics
 Heart Failure
- 9. Heart Attack
- 10.# Rx Medications
- 11.Diabetes 12.Stroke

VIMPs (99% CIs) for Cardiovascular Mortality

Second-Tier Predictors (continued):
13.Self-rated health status
14.Widdowed
15.Ca Channel Blockers
16.Beta Blockers
17.Black (vs. white)
18.College Education
19.Married
20.High BP
21.Angina
22.Ace Inhibitors
23.Time in Bed
24.Health behaviors domain

25.Napping 26.Wake-up time



Characterization of Phenotypes 51				
	HSP	AS	ISS	d/h > .20
Anxiety (GADS)	0.85(1.73)	0.92(1.76)	2.46(2.86)	ISS > (HSP, AS)
Depression (GDS-15)	2.27(2.26)	1.87(2.22)	2.97(2.66)	ISS > (HSP, AS)
Cognition (26-item mMMSE)	23.8(2.67)	24(2.21)	23.89(2.24)	
Self-Rated Health (1 = Excellent; 5=Very Poor)	1.96(0.77)	1.86(0.67)	2.08(0.71)	ISS > AS
Number of Functional Limitations (Range 0 – 5)	0.84(1.22)	0.61(1.07)	1.01(1.41)	(ISS, HSP) > AS
Number of Chronic Conditions	1.75(1.46)	1.6(1.24)	2.12(1.55)	ISS > (HSP, AS)
Number of Prescription Medications	4.41(3.09)	4(2.9)	5.06(3.59)	ISS > AS