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How did 

you sleep 
last night?

Reality: Sleep is Multidimensional 3
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(Buysse, Sleep Health 2014)



Reality: Sleep is Multidimensional 4
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Statistical Challenges 5

 Multiple 
characteristics

 Multiple 
domains

 Multiple data 
types

 Complex 
associations

MORTALITY
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What is the importance of MDSH 
for mortality relative to other 

established risk factors?

Which sleep characteristics 

predict mortality?

Do MDSH phenotypes exist?

Explaining 
Associations

• Tree models

• Random forest 

techniques  

• Clustering followed 
by regression  (or 

other model)

Individual
Predictions

Which individuals are at risk for 
mortality based on their MDH? 

• Random Forest
• Other Machine 

Learning  

Overarching 
Goal

What is the question?
Methods I am 

Using

Do MDSH phenotypes predict 
mortality?
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What is the importance of MDSH 
for mortality relative to other 

established risk factors?

Which sleep characteristics 
predict mortality?

Explaining 
Associations

• Tree models

• Random forest 

techniques  

Overarching 
Goal

What is the question?
Methods I am 

Using

Who cares?
• Few major health guidelines include sleep

• Incorporate into health screening tools?
• Prediction + modifiability = Novel Target
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N=8,668 
Males and Females 

in Analytic Sample 

N=2,917 Males (MrOS) 

Black or White 
Mortality Data

Complete Sleep Data 

N=3,692 Females (SOF)
Black or White 

Mortality Data
Complete Sleep Data

N=2,159 Males and Females (SHHS) 

Black or White 
Mortality Data

Complete Sleep Data

Age ≥65 
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Self-

Reported 
Sleep 

(15 vars)

SATED 
Characterisitcs

(8) 

Symptoms of 
Sleep Disorders

(4)

Medications 
with Sleep 

Effects (3)
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11
Non-

Sleep
(32 Vars.)

Sociodemo-
graphic

(6)

Physical 
Health (10)

Health 
Behaviors

(4)

Mental 
Health (1)

Medications
(11)

 Machine learning approach

 Models complex, non-linear associations  

Random Survival Forest 12

Ishrawan, et al. 2008, Ann Appl Stat 



 Single Tree Model: Empirically derived set of decision rules 

(e.g., is age < 80?) to classify someone into a mortality risk 

group 

Random Survival Forest 13
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Random Survival Forest 13
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Wallace ML et al., 2018, SLEEP

 Create hundreds of bootstrap samples

 Divide each sample into “in-bag” / “out of bag” (OOB) sets

 Fit tree model to each “in-bag” sample to create forest

Random Survival Forest

…

Tree 1 Tree 2 Tree 3 Tree 1,000…
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 Send new case down each tree in the “forest” 

 Aggregate results

Random Survival Forest

…

Aggregate

Estimated Hazard 
Function

16



Can the model discriminate which of two randomly 

selected individuals will have a worse survival outcome? 
(1 - Harrell’s C) 

 In-bag prediction error (cases used to grow trees)

 OOB prediction error (cases used to grow other trees)

 Cross-Validation or External Validation (not used to grow any trees)

17Prediction Error of Model

Variable Importance (VIMP)

1. Grow random forest (uses in-bag data)

2. Estimate OOB Error of Model with Real “X”: 

3. Estimate OOB Error of Model with Permuted “X”

4. Compare (larger → “X” more predictive)

 Can compute VIMPs for groups of variables (e.g., MDSH)

 Confidence intervals: stratified subsampling with jackknife 

estimates of standard errors  (Ishrawan & Lu, Stat Med, in press)
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Variable Importance (VIMP) 22

Use OOB data to enhance computational efficiency 

VIMPs of correlated measures artificially inflated

Assess relative predictive accuracy by refitting random 
forest with vs without predictor(s)

Computationally burdensome!!



19VIMPs (99% CIs) for All-Cause Mortality

Wallace, Buysse et al., 2019, J Gerontol A Biol Sci Med Sci

20VIMPs (99% CIs) for All-Cause Mortality

Top-Tier Predictors:
1. Socio-demographic Domain 
2. Age

3. Physical Health Domain

Second-Tier Predictors:
3. Functional Limitations 
4. Medication Domain

5. Sleep Domain
6. Self-Rated Health Status
7. Heart Failure
8. Diuretics
9. # Rx Medications

10. Heart Attack
11. Depressive Symptoms 

21VIMPs (99% CIs) for All-Cause Mortality

Second-Tier Predictors (continued):
12.Widowed
13.BMI

14. Health Behaviors Domain
15. Time in Bed
16. Napping
17.Stroke
…

…
27. Total Sleep Time
28. Antidepressants
29. Bed Time
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Wallace, Buysse et al., 2019, J Gerontol A Biol Sci Med Sci

Compare Models: 
Age 
vs. 

Age + One Domain 

3 Metrics:
Model (In-Bag) Data

OOB Data
5-Fold XV
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Wallace, Buysse et al., 2019, J Gerontol A Biol Sci Med Sci

• Adding any     

1 domain 
doesn’t notably  

improve

accuracy

• Don’t assess 
accuracy with 

the “in-bag” 

data!
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Wallace, Buysse et al., 2019, J Gerontol A Biol Sci Med Sci

• Removing any 

1 domain 
doesn’t notably  

decrease

accuracy

• Don’t assess 
accuracy with 

the “in-bag” 

data!



24Why do we care?

 Need to start asking older adults about their 
sleep 

 Not only sleep duration!

 Screening tools incorporating MDSH should be 
developed  

 Other ages?

 MDSH Modifiability + Predictive Ability = Novel 
Target for Improving Health
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What is the importance of MDSH 
for mortality relative to other 

established risk factors?

Which sleep characteristics 
predict mortality?

Do MDSH phenotypes exist?

Explaining 
Associations

• Tree models

• Random forest 

techniques  

• Clustering followed 
by regression  (or 

other model)

Individual
Predictions

Which individuals are at risk for 

mortality based on their MDH? 

• Random Forest
• Other Machine 

Learning  

Overarching 
Goal

What is the question?
Methods I am 

Using

Do MDSH phenotypes predict 
mortality?

Why do we care about phenotypes?

• Clarify understanding of sleep challenges

• Motivate the development of novel treatments 

• Phenotypes stronger and more meaningful 

predictors?

• Suggest hypotheses for underlying disease 
mechanisms

26
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2,046 Non-Matching Males
2,394 Non-Matching Females

N=6,162 Unmatched 
Males and Females 

N=2,907 Males (MrOS) 

Black or White 
Mortality Data

Complete Matching/SATED Data 

N=3,255 Females (SOF)
Black or White 

Mortaliy Data
Complete Matching/SATED Data

N=1,722 Matched Males (N=861) 
and Matched Females (N=861)

32Matched Males
Older

More likely to be black

Less education
Less likely to be married
Less Smoking/Drinking

Worse physical health
Worse mental health

SATED Framework (Buysse 2014, Sleep Health) 29

Domain Sleep Characteristic
Satisfaction Poor Quality (Poor/ Very Poor on PSQI item)*

Alertness/
Sleepiness

High Sleepiness (Epworth > 10)*

Timing

Sleep Midpoint 

Early (<02:00)*

Middle (02:00 -04:00)

Late (>04:00)*

Efficiency Low Sleep Efficiency (<85%)*

Duration

Total Sleep Time

Short (<6 hours)*

Medium (6-8 hours)

Long (>8 hours)*

*Potentially adverse sleep characteristic
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SATED Score 31

Common SATED Combinations?

By hand

 23 x 32 = 72 possible SATED patterns

 Tabulate all of them? 

Use LCA to identify most common patterns

 Model-based

 Maximize likelihood to estimate unknown parameters (e.g., class 
probabilities)

32



Latent Class Analysis

How many classes?

 Fit models with 1- 6 classes 

 Examine relative goodness of fit with AIC and BIC

 Bootstrap Likelihood Ratio (McLachlan 1987, Applied Stat)

Evaluate Stability and Class Separation of Final Model

 Jaccard Coefficient for stability of each class (Hennig 2007, Comp Stat Data Anal)

 Model Entropy (Ramaswamy et  al., 1993, Marketing Science)

33

How Many Classes?

8600

8800

9000

9200

9400

9600

9800

1 2 3 4 5 6

BIC

AIC
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Bootstrap Likelihood Ratio Test

1 vs. 2 Classes <0.001

2 vs. 3 Classes <0.001

3 vs. 4 Classes 0.207

3-Class Solution

High Sleep Propensity (HSP)

Average Sleep (AS)

Insomnia + Short Sleep (ISS)

39

Jaccard Coefficient 
0 = least stable  

1 = most stable

HSP 0.44

AS 0.70

ISS 0.79

Model Entropy = 0.59
0 = low class separation

1 = high class separation
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Matched Males (N=861)

41

MrOS Males (N=2,907)

42

Matched Females (N=861)
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SOF Females (N=3,255)

Stability of HSP Phenotype 40

HSP Phenotype

Matched Sample

Matched Males 

Matched Females

MrOS Males

SOF Females

Characterization of Phenotypes 40

d/h > |.20|

Anxiety (GADS) ISS > (HSP, AS)

Depression (GDS-15) ISS > (HSP, AS)

Cognition (26-item mMMSE)

Self-Rated Health (1 = Excellent; 5=Very Poor) ISS > AS

Number of Functional Limitations (ISS, HSP)  > AS

Number of Chronic Conditions  
ISS > (HSP, AS)

Number of Prescription Medications ISS > AS
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Time to All-Cause Mortality

• Associations stronger among 
women

• Findings generalize to other 
samples (smaller effects in 
MrOS/SOF)

• Other  sleep health 
approaches (SATED scale, 
multivariable regression) not 
predictive

Moving Forward

Objective data types (Actigraphy, PSG)

Does MDSH also predict other health outcomes? 

Mechanisms linking HSP or MDSH to mortality

Create a MDSH measures that is good enough for multiple 
outcomes or populations

42

Thank you! lotzmj@upmc.edu 43
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Data from the Osteoporotic Fractures in Men (MrOS) Study is 
publicly available on the MrOS Online website. 

For more information or to download data, please visit:  

http://mrosdata.sfcc-cpmc.net
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Sample Characteristics

Sample Characteristics

Mean (SD) age = 78.7 (6.7)  

8% Black  (N=718)

54% Female (N=4,682)

41% All-cause mortality (N=3,552)

13% Cardiovascular mortality (N=1,079)
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47VIMPs (99% CIs) for Cardiovascular Mortality

48VIMPs (99% CIs) for Cardiovascular Mortality

Top-Tier Predictors:
1. Physical Health Domain
2. Sociodemographic Domain

Second-Tier Predictors:
3. Medications Domain
4. Age
5. Sleep Domain

6. Functional Limitations 
7. Diuretics 
8. Heart Failure
9. Heart Attack
10.# Rx Medications

11.Diabetes
12.Stroke

49
VIMPs (99% CIs) for Cardiovascular Mortality

Second-Tier Predictors (continued):
13.Self-rated health status
14.Widowed

15.Ca Channel Blockers
16.Beta Blockers
17.Black (vs. white)
18.College Education 
19.Married

20.High BP
21.Angina
22.Ace Inhibitors
23.Time in Bed
24.Health behaviors domain

25.Napping
26.Wake-up time
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Characterization of Phenotypes 51

HSP AS ISS d/h > |.20|

Anxiety (GADS) 0.85(1.73) 0.92(1.76) 2.46(2.86) ISS > (HSP, AS)

Depression (GDS-15) 2.27(2.26) 1.87(2.22) 2.97(2.66) ISS > (HSP, AS)

Cognition (26-item mMMSE) 23.8(2.67) 24(2.21) 23.89(2.24)

Self-Rated Health (1 = 

Excellent; 5=Very Poor)
1.96(0.77) 1.86(0.67) 2.08(0.71) ISS > AS

Number of Functional 

Limitations (Range 0 – 5)
0.84(1.22) 0.61(1.07) 1.01(1.41) (ISS, HSP)  > AS

Number of Chronic 

Conditions  
1.75(1.46) 1.6(1.24) 2.12(1.55) ISS > (HSP, AS)

Number of Prescription 

Medications

4.41(3.09) 4(2.9) 5.06(3.59) ISS > AS


