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How did
you sleep
last night?

Can't sleep.
Gonna die.

Redlity: Sleep is Multidimensional

Regularity
Satisfaction

Ru-SATED?
(Buysse, Sleep Health 2014)




Readlity: Sleep is Multidimensional

Regularity
Satisfaction
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Statistical Challenges
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NON-SLEEP RISK FACTORS Methods?
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Who cares?

« Few major health guidelines include sleep
* Incorporate into health screening tools?

« Prediction + modifiability = Novel Target

N=2,159 Males and Females (SHHS)
Black or White
Mortality Data
N=3,692 Females (SOF) Complete Sleep Data N=2,917 Males (MrOS)
Black or White Age 265 Black or White

Complete Sleep Data Complef leep Data

Mortality Data l Mortality Data

N=8,668
Males and Females
in Analytic Sample




Self-
Reported
Sleep
(15 vars)
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SATED Medications Symptoms of
Characterisitcs with Sleep Sleep Disorders
®@) Effects (3) )
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Satisfaction* (1
Aleriness/
Sleepiness (2)
Timing (2)
Efficiency/
Continuity (2)
Duration (2)
Insomnia (2)
Sleep Apnea (2)

Non-
Sleep

(32 vars.)

Medications
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Mental
Physical CE=I(ED
Health (10)

Random Survival Forest

» Machine learning approach

» Models complex, non-linear associations

Ishrawan, et al. 2008, Ann Appl Stat




Random Survival Forest 13

» Single Tree Model: Empirically derived set of decision rules
(e.g., is age < 80?) to classify someone into a mortality risk
group Z

Random Survival Forest 13

» Single Tree Model: Empirically derived set of decision rules
(e.g., is age < 807?) to classify someone into a mortality risk

group ezz

Random Survival Forest 13

» Single Tree Model: Empirically derived set of decision rules
(e.g., is age < 80?) to classify someone into a mortality risk

group ezz




Wallace ML et al., 2018, SLEEP

{6

PASE
HR {95% Cl) p <0001
21(16,27)

£180.821 >180.821

) lode 7 (n = 839) iode 8 (n = 363)

0246810 0246810 0246810
Years of Follow-Up  Years of Folow-Up  Years of Folow-Up

Random Survival Forest 15
» Create hundreds of bootstrap samples
» Divide each sample into “in-bag” / “out of bag” (OOB) sets
» Fit tree model to each “in-bag” sample to create forest

Random Survival Forest

» Send new case down each tree in the “forest”

» Aggregate results

Estimated Hazard




Prediction Error of Model 17
Can the model discriminate which of two randomly
selected individuals will have a worse survival outcome?
(1 - Harrell’'s C)

» In-bag prediction error (cases used to grow trees)

» OOB prediction error (cases used fo grow other frees)

» Cross-Validation or External Validation (not used to grow any trees)

Variable Importance (VIMP)

. Grow random forest (uses in-bag data)
2. Estimate OOB Error of Model with Real “X":
3. Estimate OOB Error of Model with Permuted “X”
4

. Compare (larger > “X” more predictive)
» Can compute VIMPs for groups of variables (e.g., MDSH)

» Confidence intervals: stratified subsampling with jackknife
estimates of standard errors (Ishrawan & Lu, Stat Med, in press)

A Variable Importance (VIMP) A 2z
» Use OOB data to enhance computational efficiency
» VIMPs of correlated measures artificially inflated

» Assess relative predictive accuracy by refitting random

forest with vs without predictor(s)
Computationally burdensomel!




VIMPs (99% Cls) for All-Cause Mortality
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Wallace, Buysse et al., 2019, J Gerontol A Biol Sci Med Sci

VIMPs (99% Cls) for All-Cause Mortality

Varable Importance (V) X 100
Top-Tier Predictors:
1. Socio-demographic Domain
Soclodemographic (Soc) - | | 4 2. Age

(= 3. Physical Health Domain

Second-Tier Predictors:

3. Functional Limitations

4. Medication Domain

5. Sleep Domain

6. Self-Rated Health Status

7. Heart Failure

i 8. Diuretics

Moderats Aoreh e 203 9. # Rx Medications
Cocpatss ) W i 10. Heart Attack

i 11. Depressive Symptoms

VIMPs (99% Cls) for All-Cause Mortality 21
Variable Importance (VIP) X 100

p Second-Tier Predictors (continued):

12.Widowed

Sociodemographic (Soc) | | e 13.BMI
e (S0¢) | | i

Ko 14. Health Behaviors Domain
15. Time in Bed

16. Napping

17 Stroke

27 Total Sleep Time
28. Antidepressants
29.Bed Time
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Wallace, Buysse et al., 2019, J Gerontol A Biol Sci Med Sci

Compare Models:

VS.
Age + One Domain

3 Metrics:
Model (In-Bag) Data
OOB Data
5-Fold XV
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Wallace, Buysse et al., 2019, J Gerontol A Biol Sci Med Sci

: + Adding any
1 domain
doesn’t notably
improve
accuracy

A Ot of Bag Data

Don't assess
accuracy with
the “in-bag”
data!
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WG!qf:e, Buysse et al., 2019, J Gerontol A Biol Sci Med Sci

Removing any
1 domain
doesn’t notably
decrease
accuracy

A Ot of Bag Data

Don't assess
accuracy with
the “in-bag”
datal




y do we care?

» Need to start asking older adults about their
sleep

» Not only sleep duration!

» Screening tools incorporating MDSH should be
developed

» Other ages?

» MDSH Modifiability + Predictive Ability = Novel
Target for Improving Health
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Why do we care about phenotypes? 26

- Clarify understanding of sleep challenges
- Motivate the development of novel treatments

- Phenotypes stronger and more meaningful
predictors?

- Suggest hypotheses for underlying disease
mechanisms




N=3,255 Females (SOF) N=2,907 Males (MrOS)
Black or White Black or White

Mortaliy Data Mortality Data

Complete Mat SATED Data Complete Matching/SATED Data

\ N=6,162 Unmatched /

Males and Females

2,046 Non-Matching Males
2,394 Non-Matching Females

and Matched Females (N=861)

Matched Males + Matched Sample

Older
More likely to be black
Less education
Less likely to be married
Less Smoking/Drinking
Worse physical health
Worse mental health

|Standardized Mean Difference|
MFOS - SOF

@ Unmatched Sample

e

Depression — f—t+
Aniety -

¥R Medications — &4
Cognition e |

SeifRated Health

Functional Limitafions
#Chronic Conditions - [&—e

<High School Degree

SATED Framework (suysse 2014, sleep Health)

M Sleep Characteristic
Satisfaction Poor Quallity (Poor/ Very Poor on PSQI item)*

Alertness/
- a High Sleepiness (Epworth > 10)*
Sleepiness gh Sleepiness (Ep )

Sleep Midpoint
Early (<02:00)*
Middle (02:00 -04:00)
Late (>04:00)*
Low Sleep Efficiency (<85%)*
Total Sleep Time
Short (<6 hours)*
Medium (6-8 hours)
Long (>8 hours)*
*Potentially adverse sleep characteristic

ver Smoke
Any Alcohol




SATED Sleep Characteristics

Early Timing Late

SATED Score

0 2 s . s

Nourbar of Potentiaky Adverss Sieep Craractensics [SATED Score)

Common SATED Combinatio

By hand
» 22x32=72po. ' LATED pattemns

» Tabulate all  .nen

Use LCA to identify most common patterns
» Model-based

» Maximize likelihood to estimate unknown parameters (e.g., class
probabilities)




How many classes?

» Fit models with 1- 6 classes

» Examine relative goodness of fit with AIC and BIC

» Bootstrap Likelihood Ratio (McLachlan 1987, Applied Stat)

Evaluate Stability and Class Separation of Final Model
» Jaccard Coefficient for stability of each class (Hennig 2007, Comp Stat Data Anal)

» Model Entropy (Ramaswamy et al., 1993,

How Many Classes?

Bootstrap Likelihood Ratio Test

2 vs. 3 Classes

— HSP.222% (N=191)
== AS 60.2% (N=518)
. 1SS 17.7% (N=152) Poor Quality

3-Class Solutio Short TST

High Sleep Propensity (HSP) Low SE

Average Sleep (AS)
__ - Migdle TST

Insomnia + Short Sleep (ISS)
High Sleepiness
Jaccard Coefficient

least stable

most stable
Lang TST

Late Midpoint

Model Entropy = 0.59 Earty Midpoint
low class separation Middle Midpoint
igh class aration




— HSP: 19.3% (N=166)
AS: 62 8% (N=541)
ISS: 17.9% (N=154) Poor Quality

Short TST

Low SE

Matched Males (N=861)

_ - Migdle TST

High Sleepiness

Long TST
Late Midpoint

Early Midpoint

Middle Midpoint

Poor Qualiy

Shoet TST

LowSE

Middla TST

Long TST

Late Mdpoint

Early Midpoirt
[rer—
— HSP.6.5% (N=56)
== AS: 77 A% (N=666)
ISS: 16.1% (N=139) Poor Quality
Short TST

Low SE

Matched Females (N=861)

High Sleepiness

Late Midpoint

Early Midpoint

Middle Midpoint




Pocr Qualty

Shot TST

LowSE

SOF Females (N=3,255)

High Seepiness.

Late Midpoint

Fasly Mckarrt
Midcte Midpaint

Stability of HSP Phenotype

Matched Sample

Matched Males
RRRHITMIUSTABLG,
T0RSTY CINNAMON BUN.

Matched Females
MrOS Males
A

SOF Females

Characterization of Phenotypes

Anxiety (GADS) ISS > (HSP, AS)

Depression (GDS-15) ISS > (HSP, AS)

Cognition (26-ifem mMMMSE)

Self-Rated Health (1 = Excellent; 15> AS
(1SS, HSP) > AS
1SS > (HSP, AS)

1SS > AS




Hazard Ratio (85% Cl)

Time to All-Cause Mortality 41

« Associations stronger am
women

« Findings generalize to other
samples (smaller effects in
MrOS/SOF)

Other sleep health
approaches (SATED scale,
multivariable regression) not
predictive

HSPvs AS -
HEP s 1SS
1SS vs AS

Moving Forward

» Objective data types (Actigraphy, PSG)
» Does MDSH also predict other health outcomes?
» Mechanisms linking HSP or MDSH to mortality

» Create a MDSH measures that is good enough for multiple
outcomes or populations

Thank youl! lotzmj@upmec.edu
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Data from the Osteoporotic Fractures in Men (MrOS) Study is
publicly available on the website.

For more information or to download data, please visit:

M MrOS Online
;hr USWIDFULIGIW Fractures in ;h]?n (MrOs) Study
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ample Characteristic

Sample Characteristics
» Mean (SD) age =78.
» 8% Black (N=718)
» 54% Female (N=4,68:
» 41% All-cause mortality (N

» 13% Cardiovascular m




VIMPs (99% Cls) for Cardiovascular Mortality
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Variatte Importance (VINR) X 100
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Depressive Syr
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VIMPs (99% Cls) for Cardiovascular Mortality

Vanabie Imporimnce (V) X
Top-Tier Predictors:

t 1. Physical Health Domain
Physical Health (PH) - | 2. Sociodemographic Domain

Sociodemographic (Soc)
[

Age (So

PO AL Second-Tier Predictors:
Diuretic i 3. Medications Domain

4. Age

5. Sleep Domain

6. Functional Limitations

7. Diuretics

8. Heart Failure

9. Heart Attack

10.# Rx Medications

11.Diabetes

12.Stroke

L rEi e

VIMPs (99% Cls) for Cardiovascular Mortality 49

Second-Tier Predictors (continued):
13.Self-rated health status
14.Widowed

15.Ca Channel Blockers
16.Beta Blockers

17.Black (vs. white)
18.College Education

19. Married

20.High BP

21.Angina

22.Ace Inhibitors

23.Time in Bed

24.Health behaviors domain
25.Napping

26.Wake-up time

Callege Educa
[
HghBlood Pre

ERITEIINE g




Characterization of Phenotype

I ™ IV I A
0.85(1.73) 0.92(1.76) 2.46(2.86) 155> (HSP, AS)
2.27(2.26) 1.87(2.22) 2.97(2.66) 155> (HSP, AS)
23.8(2.67) 24(2.21) 23.89(2.24)

Self-Rated Health (1

1.96(0.77) 1.86(0.67) 2.08(0.71) 155> AS
Number of Functional

0.84(1.22) 0.61(1.07) 1.01(1.41) (1SS, HSP) > AS

mber of Chronic

1.75(1.46) 1.6(1.24) 2.12(1.55) 1SS > (HSP, AS)
Number of Prescription

4.41(3.09) 4(29) 5.06(3.59) 155> AS
Medications




